PROBLEM

Let
$$g(x) = 2f\left(\frac{x}{2}\right) + f(2-x)$$
 and $f''(x) < 0 \ \forall \ x \in (0, 2)$.

Then g(x) increases in

a. (1/2, 2)

b. (4/3, 2)

c. (0, 2)

d. (0, 4/3)

SOLUTION

d. We have
$$g'(x) = f'(\frac{x}{2}) - f'(2-x)$$

Given $f''(x) < 0 \ \forall x \in (0, 2)$

So, f'(x) is decreasing on (0, 2).

Let
$$\frac{x}{2} > 2 - x$$
 or $f'(\frac{x}{2}) < f'(2 - x)$.

Thus,
$$\forall x > \frac{4}{3}, g'(x) < 0$$
.

Therefore, g(x) decreasing in $\left(\frac{4}{3}, 2\right)$ and increasing in $\left(0, \frac{4}{3}\right)$.